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1  

Benchmarking n-grams, topic models and 
recurrent neural networks by cloze com-

pletions, EEGs and eye movements 

Previous neurocognitive approaches to word predictability from sentence context in electroen-
cephalographic (EEG) and eye movement (EM) data relied on cloze completion probability 
(CCP) data effortfully collected from up to 100 human participants. Here we test whether three 
well-established language models can predict these data. Together with baseline predictors of 
word frequency and position in sentence, we found that the syntactic and short-range semantic 
processes of n-gram language models and recurrent neural networks (RNN) perform about 
equally well when directly accounting CCP, EEG and EM data. In contrast, a low amount of 
variance explained by a topic model suggests that there is no strong impact on the CCP and the 
N400 component of the EEG, at least in our Potsdam Sentence Corpus dataset. For the single-
fixation durations of the EM data, however, topic models accounted for more variance, suggest-
ing that long-range semantics may play a greater role in this earlier neurocognitive process. 
Though the language models were not significantly inferior to CCP in accounting for these EEG 
and EM data, CCP always provided a descriptive increase in explained variance for the three 
corpora we used. However, n-gram and RNN models can account for about half of the variance 
of the CCP-based predictability estimates, and the largest part of the variance that CCPs ex-
plain in EEG and EM data. Thus, our approaches may help to generalize neurocognitive models 
to all possible novel word combinations, and we propose to use the same benchmarks for lan-
guage models than for models of visual word recognition.   

 

                                                             
Chapter written by Markus J. HOFMANN, Chris BIEMANN, and Steffen REMUS 
 



    2     Cognitive Approach to Natural Language Processing 

1.1. Introduction 

In neurocognitive psychology, manually collected cloze completion probabilities 
(CCPs) are the standard approach to quantifying a word’s predictability from sen-
tence context [KLI 04; KUT 84; REI 03]. Here we test a series of language models 
in accounting for CCPs, as well as the data they typically account for, i.e. electroen-
cephalographic (EEG) and eye movement (EM) data. With this, we hope to render 
time-consuming CCP procedures unnecessary. We test a statistical n-gram language 
model [KNE 95], a Latent Dirichlet Allocation (LDA) topic model [BLE 03], as 
well as a recurrent neural network (RNN) language model [BEN 03; ELL 90] for 
correlation with the neurocognitive data. 

CCPs have been traditionally used to account for N400 responses as an EEG sig-
nature of a word’s contextual integration into sentence context [DAM 06; KUT 84]. 
Moreover, they were used to quantify the concept of word predictability from sen-
tence context in models of eye movement control [ENG 05; REI 03]. However, 
because CCPs are effortfully collected from samples of up to 100 participants 
[KLI 04], they provide a severe challenge to the ability of a model to be generalized 
across all novel stimuli [HOF 14], which also prevents their ubiquitous use in tech-
nical applications. 

To quantify how well computational models of word recognition can account for 
human performance, Spieler and Balota [SPI 97] proposed that a model should ex-
plain variance at the item-level, for instance naming latencies, averaged across a 
number of participants. Therefore, a predictor variable is fit to the mean word nam-
ing latency y as a function of  𝑦 = 𝑓 𝑥 = 𝑎& 𝑥& + 𝑏 + 𝑒𝑟𝑟𝑜𝑟 for a number of n 
predictor variables x that are scaled by a slope factor a, an intercept of b, and an 
error term. The Pearson correlation coefficient r is calculated, and squared to deter-
mine the amount of explained variance r2. Models with a larger number of n free 
parameters are more likely to (over-)fit error variance, and thus less free parameters 
are preferred (e.g., [HOF 14]). 

While the best cognitive process models can account for 40-50% of variance in 
behavioral naming data [PER 10], neurocognitive data are noisier. The only interac-
tive activation model that gives an amount of explained variance in EEG data [BAR 
07; MCC 81] was Hofmann et al. [HOF 08], who account for 12% of the N400 vari-
ance. Though models of eye movement control use item-level CCPs as predictor 
variables [ENG 05; REI 03], computational models of eye movement control have 
hardly been benchmarked at the item-level, to our knowledge [DAM 07]. 

While using CCP-data increases the comparability of many studies, the creation 
of such information is expensive and they only exist for a few languages [KLI 04; 
REI 03]. If it were possible to use (large) natural language corpora and derive the 
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information leveraged from such resources automatically, this would considerably 
expedite the process of experimentation for under-resourced languages. Comparabil-
ity would not be compromised when using standard corpora, such as available 
through Goldhahn et al. [GOL 12] in many languages. However, it is not yet clear 
what kind of corpus is most appropriate for this enterprise, and whether there are 
differences in explaining human performance data. 

1.2. Related Work 

Taylor [TAY 53] was the first to instruct participants to fill a cloze with an ap-
propriate word. The percentage of participants that fill in the respective word serves 
as cloze completion probability. For instance, when exposed to the sentence frag-
ment ”He mailed the letter without a ___”, 99% of the participants complete the 
cloze by ”stamp”, thus CCP equals 0.99 [BLO 80]. Kliegl et al. [KLI 04] logit-
transformed CCPs to obtain pred = ln(CCP/(1−CCP)).  

Event-related potentials are computed from human EEG data. For the case of the 
N400, words are often presented word-by-word, and the EEG waves are averaged 
across a number of participants relative to the event of word presentation. Because 
brain-electric potentials are labeled by their polarity and latency, the term N400 
refers to a negative deflection around 400ms after the presentation of a target word. 

After Kutas and Hillyard [KUT 84] discovered the sensitivity of the N400 to 
cloze completion probabilities, they suggested that it reflects the semantic relation-
ship between a word and the context in which it occurs. However, there are several 
other factors that determine the amplitude of the N400 [KUT 11]. For instance, 
Dambacher et al. [DAM 06] found that word frequency (freq), the position of a word 
in a sentence (pos), as well as predictability does affect the N400. 

While the eyes remain relatively still during fixations, readers make fitful eye 
movements called saccades [RAD 12]. When successfully recognizing a word in a 
stream of forward eye movements, no second saccade to or within the word is re-
quired. The time the eyes remain on that word is called single-fixation duration 
(SFD), which shows a strong correlation to word predictability from sentence con-
text (e.g., [ENG 05]).  
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1.3. Methodology 

1.3.1 Human Performance Measures 

This study proposes that language models can be benchmarked by item-level 
performance on three data sets that are openly available in online databases. Predict-
ability was taken from the Potsdam Sentence Corpus 1, first published by Kliegl et 
al. [KLI 04]. The 144 sentences consist of 1138 tokens, available in Appendix A of 
[DAM 09], and the logit-transformed CCP measures of word predictability were 
retrieved from Ralf Engbert’s homepage1 [ENG 05]. For instance, in the sentence 
“Manchmal sagen Opfer vor Gericht nicht die volle Wahrheit” [Before the court, 
victims tell not always the truth.], the last word has a CCP of 1. N400 amplitudes 
were taken from the 343 open-class words published in Dambacher and Kliegl 
[DAM 07]. These are available from the Potsdam Mind Research Repository2. The 
EEG data published there are based on a previous study (see [DAM 06] for method 
details). The voltage of ten centroparietal electrodes was averaged across 48 artifact-
free participants from 300 to 500ms after word presentation for quantifying the 
N400. SFD are based on the same 343 words from Dambacher and Kliegl [DAM 
07], available from the same source URL. Data were included when this word was 
only fixated for one time, and these SFDs ranged from 50 to 750ms. The SFD was 
averaged across up to 125 German native speakers [DAM 07]. 

1.3.2 Three Flavors of Language Models 

Language models are based on a probabilistic description of language phenome-
na. Probabilities are used to pick the most fluent of several alternatives e.g. in ma-
chine translation or speech recognition. Word n-gram models are defined by a 
Markov chain of order 𝑛 − 1, where the probability of the following word only 
depends on previous 𝑛 − 1 words. In statistical models, the probability distribution 
of the vocabulary, given a history of 𝑛 − 1 words, is estimated based on n-gram 
counts from (large) natural language corpora. There exist a range of n-gram lan-
guage models (see for example Chapter 3 in [MAN 99], which are differentiated by 
the way they handle unseen events and perform probability smoothing). Here, we 
use a Kneser-Ney [KNE 95] 5-gram model3. For each word in the sequence, the 
language model computes a probability p in ]0; 1[. We use the logarithm log(p) of 
this probability as predictor. We used all words in their full form, i.e. did not filter 
for specific word classes and did not perform lemmatization. N-gram language mod-

                                                             
1 http://mbd.unipotsdam.de/EngbertLab/Software.html 
2 http://read.psych.unipotsdam.de 
3 https://code.google.com/p/berkeleylm/ 
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els are known to model local syntactic structure very well. Since only n-gram mod-
els use the most recent history for predicting the next token, they fail to account for 
long-range phenomena and semantic coherence, cf. [BIE 12].  

Latent Dirichlet Allocation (LDA) topic models [BLE 03] are generative prob-
abilistic models representing documents as a mixture of a fixed number of N topics, 
which are defined as unigram probability distributions over the vocabulary. Through 
a sampling process like Gibbs sampling, topic distributions are inferred. Words 
frequently co-occurring in the same documents receive a high probability in the 
same topics. When sampling the topic distribution for a sequence of text, each word 
is randomly assigned to a topic according to the document-topic distribution and the 
topic-word distribution. We use Phan and Nguyen’s [PHA 07] GibbsLDA imple-
mentation for training an LDA model with 200 topics (default values for α = 0.25 
and β = 0.001) on a background corpus. Words occurring in too many documents 
(a.k.a. stopwords) or too few documents (mistyped or rare words) were removed 
from the LDA vocabulary. Then, retain the per document topic distribution 𝑝(𝑧|𝑑) 
and the per topic word distribution 𝑝 𝑤 𝑧 , where 𝑧 is the latent variable represent-
ing the topic, 𝑑 refers to a full document during training—during testing 𝑑 refers to 
the history of the current sentence—and 𝑤 is a word. In contrast to our earlier ap-
proach using only the top three topics [BIE 15], we here computed the probability of 
the current word 𝑤 given its history 𝑑 as a mixture of its topical components 
𝑝 𝑤 𝑑 = 	𝑝(𝑤|𝑧)𝑝(𝑧|𝑑). We hypothesize that topic models account for some long-
range semantic aspects missing in n-gram models. While Bayesian topic models are 
probably the most widespread approach to semantics in psychology (e.g., [GRI 07]), 
latent semantic analysis (LSA) is not applicable in our setting [LAN 97]: we use the 
capability of LDA to account for yet unseen documents, whereas LSA assumes a 
fixed vocabulary and it is not trivial to fold new documents into LSA’s fixed docu-
ment space. 

While Jeff Elman’s [ELM 90] seminal work suggested already early that seman-
tic and also syntactic structure automatically emerges from a set of simple recurrent 
units, such an approach has received little attention in language modelling for a long 
time, but is currently in focus of many computational studies. In brief, such Neural 
Network Language Models are based on the optimization the probability of the 
occurrence of a word given its history using neural units linking back to themselves, 
much as the neurons in the CA3 region of the human hippocampus [MAR 71, NOR 
03]. The task of language modelling using neural networks was first introduced by 
Bengio et al. [BEN 03] and received at that point only little attention because of 
computational challenges regarding space and time complexity. Due to recent ad-
vancement in the field of neural networks—for an overview see [MIK 12]—neural 
language models gained a more popularity, particularly because of so-called neural 
word embeddings as a side product. The language model implementation we use in 
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this work is a recurrent neural network architecture4 similarly to the one used by 
Mikolov’s Word2Vec5 toolkit [MIK 13]. We trained a model with 400 hidden layers 
and hierarchical softmax. For testing we used the complete history of a sentence up 
to the current word. 

1.4. Experiment Setup 

Engbert et al.’s [ENG 05] data are organized in 144 short German sentences with 
an average length of 7.9 tokens, and provide features, such as freq as corpus fre-
quency in occurrences per million (Baayen et al., 1995), pos, and pred. We test 
whether two corpus-based predictors can account for predictability, and compare the 
capability of both approaches in accounting for EEG and EM data. For training n-
gram and topic models, we used three different corpora differing in size and cover-
ing different aspects of language. Further, the units for computing topic models 
differ in size. 

NEWS: A large corpus of German online newswire from 2009 as collected by 
LCC [GOL 12] of 3.4 million documents / 30 million sentences / 540 million tokens. 
This corpus is not balanced, i.e. important events in the news are covered better than 
other themes. The topic model was trained on the article level. 

WIKI: A recent German Wikipedia dump of 114,000 articles / 7.7 million sen-
tences / 180 million tokens. This corpus is rather balanced, as concepts or entities 
are described in a single article each, independent of their popularity, and spans all 
sorts of topics. The topic model was trained on the article level. 

SUB German subtitles from a recent dump of opensubtitles.org, containing 7420 
movies / 7.3 million utterances / 54 million tokens. While this corpus is much small-
er than the others, it is closer to a colloquial use of language. Brysbaert et al. 
[BRY 11] showed that word frequency measures of subtitles provide numerically 
greater correlations with word recognition speed than larger corpora of written lan-
guage. The topic model was trained on the movie level. 

Pearson’s product-moment correlation coefficient was calculated (e.g. [COO 10], 
p. 293), and squared for the N = 1138 predictability scores [ENG 05] or N = 343 
N400 amplitudes or SFD [DAM 07]. To address overfitting, we randomly split the 
material in two halves, and test how much variance can be reproducibly predicted on 
two subsets of 569 items. For N400 amplitude and SFD, we used the full set, be-
cause one half was too small for reproducible predictions. The correlations between 

                                                             
4 FasterRNN: https://github.com/yandex/faster-rnnlm  
5 Word2Vec: https://code.google.com/archive/p/word2vec/ 
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all predictor variables can be examined in Table 1.1. We observe very high correla-
tions between the n-gram and the RNN predictions within and across corpora. The 
correlations involving topic-based predictions are smaller, supporting our hypothesis 
that they reflect a somewhat different neurocognitive process. 

 
 

  1. 2. 3. 4. 5. 6. 7. 8. 9. 
NEWS 1. n-gram  0.65 0.87 0.87 0.56 0.84 0.83 0.59 0.80 

2. topic 0.65  0.68 0.66 0.78 0.70 0.61 0.77 0.61 
3. neural 0.87 0.68  0.84 0.59 0.88 0.77 0.62 0.79 

WIKI 4. n-gram 0.87 0.66 0.84  0.61 0.90 0.79 0.59 0.78 
5. topic 0.56 0.78 0.59 0.61  0.65 0.55 0.75 0.55 
6. neural 0.84 0.70 0.88 0.90 0.65  0.76 0.64 0.79 

SUB 7. n-gram 0.83 0.61 0.77 0.79 0.55 0.76  0.61 0.85 
8. topic 0.59 0.77 0.62 0.59 0.75 0.64 0.61  0.61 
9. neural 0.80 0.61 0.79 0.78 0.55 0.79 0.85 0.61  

Table 1.1. Correlations between the language model predictors 

1.5. Results 

1.5.1 Predictability results 

In the first series of results, we examine the prediction of manually obtained 
CCP-derived predictability with corpus-based methods. A large amount of explained 
variance would indicate that predictability could be replaced by automatic methods. 
As a set of baseline predictors, we use pos and freq, which explains 0.243 / 0.288 of 
the variance for the first respectively the second half of the dataset. We report results 
in Table 1.2 for all single corpus-based predictors alone and in combination with the 
baseline, all combinations of the baseline with n-gram, topics, and neural models 
from the same corpus. 
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Predictors   NEWS    WIKI     SUB 
n-gram .262/.294 .226/.253 .268/.272 
topic .063/.061 .042/.040 .040/.034 
neural .229/.226 .211/.226 .255/.219 
base+n-gram .462/.490 .423/.458 .448/.459 
base+topic .348/.375 .333/.357 .325/.355 
base+neural .434/.441 .418/.433 .447/.418 
base+n-gram+topic .462/.493 .427/.464 .447/.458 
base+n-gram+neural .466/.492 .431/.461 .467/.461 
base+neural+topic .438/.445 .421/.436 .446/.423 
base+n-gram+topic+neural .466/.493 .433/.465 .467/.460 

Table 1.2. r2 explained variance of predictability, given for two halves of the data set, for 
various combinations of baseline and corpus-based predictors 

It is apparent that the n-gram scores best, but also the neural model alone reach r2 
levels that approach the baseline. In contrast, much as our earlier top-three topics 
approach [BIE 15], the mixture of all topics explains only a relatively low amount of 
variance. Combining the baseline with the n-gram predictor already reaches a level 
very close to the combination of all predictors, thus it may provide the best com-
promise between parsimony and explained variance. Again, this model performance 
is closely followed by the recurrent neural network (see Figure 1.1). 

 

 

Figure 1.1. Prediction models exemplified for the NEWS corpus in the x-axes and the N = 
1138 predictability scores on the y-axes. A) shows the prediction by baseline + n-gram 

(r2=0.475), B) a recurrent neural network (r2=0.437), and C) a model containing all predic-
tors (r2=0.478). The three pairwise Fisher’s r-to-z tests revealed no significant differences in 

explained variance (Ps>0.18) 
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We also fitted a model based on all corpus-based predictors from all corpora, 
which achieved the overall highest r2= 0.490/.507. In sum, it becomes clear that 
about half of the empirical predictability variance can be explained by a combination 
positional and frequency features combined with either a word n-gram language 
model, or a recurrent neural network.  

1.5.2. N400 amplitude results 

For modeling N400, we have even more combinations at our disposal since we 
can combine corpus-based measures with the baseline, the predictability perfor-
mance, and with both. We evaluate on all 343 data points for N400 amplitude fit-
ting. Without using corpus-based predictors, the baseline predicts a mere 0.032 of 
variance, predictability alone explains 0.192 of variance, and their combination 
explains 0.193 – i.e. the baseline is almost entirely subsumed by CCP-based predict-
ability. As can be seen in Table 1.3, this is a score that is not yet reached by the 
language models, even when combining all of them.  

 
Predictors NEWS WIKI SUB 
n-gram .141 .140 .126 
topic  .039 .055 .025 
neural .108 .098 .100 
base+n-gram .161 .153 .135 
base+topic .063 .079 .055 
base+neural .133 .116 .114 
base+n-gram+topic .161 .158 .132 
base+n-gram+neural .167 .153 .141 
base+neural+topic .133 .123 .112 
base+n-gram+topic+neural .167 .158  .137 
base+n-gram+pred .223 .226 .206 
base+topic+pred .193 .204 .191 
base+neural+pred .221 .212 .206 
base+n-gram+topic+pred .225 .228 .203 
base+n-gram+neural+pred .228 .226 .209 
base+neural+topic+pred .224 .215 .203 
base+n-gram+topic+neural+pred .232 .228 .206 

Table 1.3. r2 explained variance of the N400 for various combinations of the corpus-based 
predictors, in combination with the baseline, and with the empirical predictability. 
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When comparing the performance of the computationally defined predictors, a 
similar picture as with the prediction of the empirical predictability emerges. The n-
gram model scores best, particularly at the larger NEWS and WIKI corpora. This 
confirms a generally accepted hypothesis that larger training data trumps smaller, 
more focused training data, see e.g. [BAN 01] and others. The n-gram model is 
however immediately followed by the neural model, and again, the topic predictor 
provides the poorest performance in explaining N400 amplitude variance, which 
suggests that the N400 does not reflect long-range semantic processes. The best 
combination without predictability, with a score of r2 = 0.167 approaches the per-
formance of the predictability and baseline (cf. Figure 1.2). 

 

 

Figure 1.2. Prediction models exemplified for the NEWS corpus in the x-axes and the N = 
334 mean N400 amplitudes on the y-axes. A) shows the prediction by baseline + n-gram 
(r2=.161), and B) shows a standard approach to N400 data, consisting of the baseline of 
position and frequency, as well as the empirical predictability (r2=.193; e.g. Dambacher, 

Kliegl, Hofmann, & Jacobs, 2006). Fisher’s r-to-z tests revealed no significant differences in 
explained variance (P = 0.55) 

The experiments with predictability as an additional predictor confirm the results 
from the previous section: n-grams + baseline and predictability capture slightly 
different aspects of human reading performance, thus their combination explains up 
to 6% more net variance than predictability alone. 

1.5.3 Single-Fixation Duration (SFD) results 

Finally, we examine the corpus-based predictors for modeling the mean single 
fixations duration for 343 words. For this target, the pos+freq baseline explains r2 = 
0.021, whereas predictability, alone or combined with the baseline, explains r2 = 
0.184.  
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Predictors NEWS WIKI SUB 
n-gram .225 .140 .126 
topic .135 .140 .100 
neural .242 .190 .272 
base+n-gram .239 .226 .226 
base+topic .152 .154 .127 
base+neural .265 .204 .284 
base+n-gram+topic .260 .262 .246 
base+n-gram+neural .287 .238 .297 
base+neural+topic .279 .235 .298 
base+n-gram+topic+neural .295 .265 .307 
base+n-gram+pred .273 .274 .258 
base+topic+pred .235 .250 .229 
base+neural+pred .314 .267 .320 
base+n-gram+topic+pred .297 .301 .275 
base+n-gram+neural+pred .319 .283 .322 
base+neural+topic+pred .319 .289 .329 
base+n-gram+topic+neural+pred .323 .304 .330 

Table. 1.4. Explained variance of the single-fixation durations, for various combinations of 
baseline, predictability and corpus-based predictors 

The experiments confirm the utility of n-gram models in accounting for eye 
movement data. The n-gram model alone explains even more variance than predict-
ability – however, the difference is not significant (P > .46). 

In contrast to the previous approaches to predictability and N400 amplitudes, 
however, the recurrent neural network outperformed the n-gram model at a descrip-
tive level, as it accounted for up to 3% more of the variance than the n-gram model. 
This performance was not reached at the largest NEWS corpus, but at the smaller 
SUB corpus. This suggests that – for SFD data – the dimension reduction seems to 
compensate for the larger amount of the noise in the smaller training data set, cf. 
[BUL 07; GAM 16*; HOF 14]. Therefore, the neural model may provide a better fit 
for such early neurocognitive processes when it is trained by colloquial language 
[BRY 11]. 

 The topics model seems to have a stronger impact on SFDs than on the other 
neurocognitive benchmark variables, suggesting a greater influence of long-range 
semantics on SFDs than on predictability or the N400. Taken together, these find-
ings point towards SFDs to reflect different cognitive processes than the N400 (cf. 
[DAM 07]). 
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Last but not least, though again adding predictability increased the total amount 
of explained variance by 2%, the language models did an excellent job in accounting 
for SFD data. When taking all language-model based predictors together, this ac-
counts for significantly more variance than the standard model using predictability 
(see Fig. 1.3). 

 

Figure 1.3. Prediction models exemplified for the SUB corpus in the x-axes and the N = 334 
mean SFD scores on the y-axes. A) shows the prediction by baseline + all three language 
model (r2=.295), and B) shows a standard approach to SFD data, using the baseline and 
predictability as predictors of SFDs (r2=.184). Fisher’s r-to-z test revealed a significant 

difference in explained variance (z=1.95; P = 0.05). 

1.6. Discussion and Conclusion 

We have examined the utility of three corpus-based predictors to account for 
word predictability from sentence context, as well as the EEG signals and EM-based 
reading performance elicited by it. Our hypothesis was that word n-gram models, 
topic models and recurrent neural network models would account for the predictabil-
ity of a token, given the preceding tokens in the sentence, as perceived by humans, 
as well as the some electroencephalographic and eye movement data that are typical-
ly explained by it. Therefore, we used the amount of explained item-level variance 
as a benchmark, which has been established as standard evaluation criterion for 
neurocognitive models of visual word recognition (e.g., [HOF 08; PER 10; SPIE 
97]). 

Our hypothesis was at least partially confirmed: n-gram models and RNNs, 
sometimes in combination with a frequency-based and positional baseline, are high-
ly correlated with human predictability scores and in fact explain variance of human 
reading performance to an extent comparable to predictability – slightly less on 
N400 but slightly more on SFD. This, however, might at least in part be explainable 
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by a larger amount of noise in the EEG data with less participants as compared to 
the eye movement data with much more participants. 

The long-range semantic relationships as captured by topic models on the other 
hand, provided a different picture. If any, the topic model made only a minor contri-
bution to predictability and the N400. For the fast and successful recognition of a 
word at one glance, as reflected by SFDs in contrast, long-range document level 
relationships seem to provide a stronger contribution. This result pattern occurs even 
in the context of single sentences, without a discourse level setting the topic of a 
document.  This suggests that colloquial and taxonomic far-reaching semantic long-
term structure particularly determines the fast and effective single-glance recogni-
tion of a word within the first 300 ms after the onset of word recognition, but hardly 
somewhat later processes around 400 ms in the brain-electric data and the time-
consuming probably late processes being contained in the predictability scores. 

For predicting the empirical word predictability from sentence context as well as 
the N400, recurrent neural network models performed often somewhat worse than 
the n-gram approach. For predicting SFDs, however, the neural model was superior. 
Most interestingly, the neural network model performs best when it is trained on a 
small but probably more representative sample of everyday language. So size does 
probably not trump everything and in any model [BAN 01]. It also hints at the gen-
eralization properties of its dimensionality reduction, which are more important for 
smaller training data [BUL 07; GAM 16; HOF 14], but probably leads to imprecise 
modeling when more data is available. 

Can we now safely replace human predictability scores with n-gram statistics? 
Given the high correlation between predictability and the combination of n-grams 
with frequency and positional information, and given that n-gram-based predictors 
achieve similar levels of explained variance than predictability, the answer seems to 
be positive. However, though our corpus-based approaches explain most of the vari-
ance that by manually collected CCP scores also account for, adding predictability 
always accounts for more variance – though this difference is not significant (see 
Figure 1.2; cf. Figures in Biemann et al., 2015). 

When contrasting the standard predictors of position, frequency and predictabil-
ity used in eye tracking and EEG research (e.g., [DAM 06; REI 03]), only for the 
SFDs all three corpus-based predictors did a better job than the standard model. 
However, with this approach it is apparent that many more predictors are needed, 
and thus the probability for fitting error variance is much larger than for the standard 
model. Thus we think that much more evidence is required, before we dare to state 
this as a firm conclusion. Also for this three-predictor model, adding the empirical 
predictability is providing a net gain of 2% explained variance. 

https://www.researchgate.net/publication/278676222_Predicting_word_'predictability'_in_cloze_completion_electroencephalographic_and_eye_movement_data?el=1_x_8&enrichId=rgreq-aff14e66102e5722b6c4b96964ee37f1-XXX&enrichSource=Y292ZXJQYWdlOzMxNDE5MDA4MztBUzo0Njc4MTEzMjg4OTI5MjhAMTQ4ODU0NjMyMDIxMw==
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Because n-gram or neural models together with word frequency and position 
captured about half of the predictability variance, and most of the N400 and SFD 
variance elicited by it, we propose that it can be used to replace tediously collected 
CCPs. This not only saves a lot of pre-experimental work, but it also opens the pos-
sibility to apply (neuro-) cognitive models in technical applications. For instance, n-
gram models, topic models and neural models can be used to generalize computa-
tional models of eye movement control to novel sentences [ENG 05; REI 03].  

In the end, language models can also improve our understanding of the cognitive 
processes underlying predictability, EEG, and EM measures. While it is not clear 
what exactly determines human CCP-based predictability performance, the different 
language models provide differential grain size levels applied their training data, 
thus paving the the way for the question which neurocognitive measures of ‘word 
predictability’ are affected by sentence- or document-level semantic knowledge. 
While Ziegler and Goswami [ZIE 05] discussed the optimal grain size of language 
learning at the word-level and sub-word-level grain sizes, recent evidence of a se-
vere decline of comprehension abilities since the 60s suggests the necessity to con-
tinue with that discussion at the level of supralexical semantic integration [SPI 16]. 
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