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Abstract 

What determines human ratings of association? We planned this paper as a test for 

association strength (AS) that is derived from the log likelihood that two words co-occur 

significantly more often together in sentences than is expected from their single word frequencies. 

We also investigated the moderately correlated interactions of word frequency, emotional valence, 

arousal, and imageability of both words (r's =< 0.3). In three studies, linear mixed effects models 

revealed that AS and valence reproducibly account for variance in the human ratings. To understand 

further correlated predictors, we conducted a hierarchical cluster analysis and examined the 

predictors of four clusters in competitive analyses: Only AS and word2vec skip-gram cosine 

distances reproducibly accounted for variance in all three studies. The other predictors of the first 

cluster (number of common associates, (positive) point-wise mutual information, and word2vec 

CBOW cosine) did not reproducibly explain further variance. The same was true for the second 

cluster (word frequency and arousal); the third cluster (emotional valence and imageability); and the 

fourth cluster (consisting of joint frequency only). Finally, we discuss emotional valence as an 

important dimension of semantic space. Our results suggest that a simple definition of syntagmatic 

word contiguity (AS) and a paradigmatic measure of semantic similarity (skip-gram cosine) provide 

the most general performance-independent explanation of association ratings. 
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Though it was originally conceptualized as a variable dependent on individual human 

behavior (Jung, 1905), psychologists have often used free association performance to account for 

other human performance (e.g., Hutchison, Balota, Cortese, & Watson, 2008; Roediger, Watson, 

McDermott, & Gallo, 2001). Similarly, human definitions of semantic systems are commonly used 

in computational linguistics. In WordNet (Miller, 1990), for example, the creators define "addition" 

as "math operation" or "building extension". These senses are grouped into synsets with the same 

meaning, such as {purse, wallet}, connected mainly by human-selected taxonomic (e.g. addition IS-

A math operation) and semantic relations (e.g. PART-OF). Though Jiang and Conrath (1997) used 

WordNet to account for variance in the rated association of 30 word pairs (Miller, 1990; Miller & 

Charles, 1991), it is questionable whether human performance on one task is a very useful 

explanation for human performance on another task. To proceed from a mere description towards 

an explanation, psychological models must be able to generate non-circular and generalizable 

predictions of human performance (e.g. Hofmann & Jacobs, 2014; Perry, Ziegler, & Zorzi, 2007, 

2010; Pitt, Myung, & Zhang, 2002).  

This same circularity problem arises with association ratings. While such ratings are useful 

for constraining the functional locus of priming (e.g., Dimigen, Kliegl, & Sommer, 2012; Lucas, 

2000), it is questionable how useful they can be in predicting other human performance measures 

(Jacobs & Grainger, 1994; Pitt, Myung, & Zhang, 2002; Westbury, 2016). Along with circularity 

inherent in predicting priming effects by association ratings, such a prediction introduces the 

practical problem of placing strong constraints on the number of associations that can be defined. 

For instance, when aiming to provide a general definition for the semantic associations of the more 

than 300,000 word forms of the CELEX lexical database, over 90,000,000,000 ratings would be 

required from several participants (Baayen, Piepenbrock, & Gulikers, 1995). 

In this paper, we compare several association measures computed from large text corpora 

with respect to their ability to predict subjective association ratings on a 7-point rating scale. These 
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co-occurrence measures will be introduced in the next section. In the second section, we  outline 

why the experiential variables of emotional valence, arousal and imageability should account for 

additional variance. In the third section, we sketch the analytical strategies for the three studies we 

conducted. 

 

Measures derived from word co-occurrence in sentences 

Association Strength. To offer a general definition of associations in semantic long-term 

memory, a very simple predictor of performance on tasks such as association judgment, associative 

priming, and false and veridical recognition memory is association strength (AS). We can define 

two words as associated when they occur significantly more often together than is predictable from 

their single occurrence frequency in a large sentence corpus (Franke, Roelke, Radach & Hofmann, 

2017; Hofmann & Jacobs, 2014; Hofmann, Kuchinke, Biemann, Tamm, & Jacobs, 2011; Kuchinke 

et al., 2013; Quasthoff et al., 2006; Rapp & Wettler, 1991, Roelke et al., 2018; Stuellein, Radach, 

Jacobs, & Hofmann, 2016). To quantify the strength of this relationship, the log-likelihood can be 

calculated from the ratio of the observed co-occurrence of two words divided by the co-occurrence 

predicted by chance (Dunning, 1993; Evert, 2005). If they show a statistically reliable association (p 

≤ 0.01, χ2 ≥ 6.63), the resulting χ2 value is log10-transformed to generate AS; otherwise, AS is 

defined as zero (Hofmann et al., 2011). 

Number of common associates. Because AS is computed over co-occurrence probabilities, 

it can be characterized by de Saussure’s (1959) term “syntagmatic” (cf. Hofmann & Jacobs, 2014), 

which refers to the association between words due to their direct co-occurrence. De Saussure (1959) 

also proposed a second type of relation, the paradigmatic relation. Two words have a paradigmatic 

relationship when they “have something in common [and so] are associated in the memory” (p. 

123). A standard approach of computational linguists quantifies paradigmatic relationship strength 

by the number of common associates: “For example, the semantic similarity of the words red and 
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blue can be derived from the fact that they both frequently co-occur with words like color, flower, 

dress, car, dark, bright, beautiful, and so forth” (Rapp, 2002, p. 1). The number of common 

associates successfully predicts semantic priming effects (Franke et al., 2017; Roelke et al., 2018). 

To define semantic feature overlap, we here used the 1000 words with the largest χ2 values as the 

semantic features of these words (Stuellein et al., 2016), and simply count the number of common 

associates. To constrain the number of common associates to words relatively diagnostic for a 

particular meaning, we excluded the 100 most frequent words (cf. e.g. Griffiths, Steyvers & 

Tennenbaum, 2007). 

Point-wise mutual information. Another co-occurrence-based measure defined by the 

relation of joint frequency to the single-word frequencies is log-normalized pointwise mutual 

information (PMI; e.g. Bouma, 2009; cf. Lund & Burgess, 1996; McKoon & Ratcliff, 1992; 

Westbury et al., 2013; Westbury, Keith, Briesemeister, Hofmann, & Jacobs, 2015). PMI is 

calculated by the probability that the words co-occur in sentences, divided by the product of the 

single occurrence probabilities of the words. PMI is based on the first word co-occurrence measure 

that accounted for semantic priming in absence of a performance-based definition of semantic 

association (McKoon & Ratcliff, 1992), and it is still used in co-occurrence-based representational 

approaches of semantics (e.g. Bullinaria & Levy, 2007; Westbury et al., 2013; Westbury et al., 

2015). 

From a statistical point of view, AS can be considered an interaction term. On the one hand, 

either there is a significant log likelihood that two words occur more often together than predictable 

by word frequency, or not. This can be defined as a dummy-coded predictor variable (0/1). On the 

other hand, if there is a significant association, AS is defined by the log-transformed c2 value. This 

is formally equivalent to an interaction (0/1 * log10(c2); cf. Hofmann et al., 2011). Consequently, 

AS has a very different distribution than the continuous variable PMI, which renders their direct 

comparison problematic. Therefore, we also took a thresholded PMI measure into account. Many 
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researchers use only positive scores of PMI (e.g. Bullinaria & Levy, 2007; Shaoul & Westbury, 

2006). We here also explore positive pointwise mutual information (PPMI).  

 Joint Frequency. The log-likelihood-based approach has become standard in 

computational linguistics (Evert, 2005, p. 137). However, there is a somewhat simpler alternative 

when aiming to define two of the associative laws of the Aristotelian tradition (McKeon, 1941), the 

law contiguity and the law of frequency.  The law of contiguity suggests that “the experience or 

recall of one object will elicit the recall of things that were originally experienced along with that 

object”. The law of frequency suggests that “the more frequently two things are experienced 

together, the more likely it will be that the experience or recall of one will stimulate the recall of the 

second” (cf. Olson & Hergenhahn, 1982, p. 35)1. Rather than defining an association over and 

above word frequency as for AS, joint frequency simply gives the number of sentences in which the 

words co-occur (cf. e.g., Evert, 2005). To obtain a predictor variable comparable to the previous 

predictors, we log-transformed joint frequency. 

Word2Vec cosine. In contrast to these measures based simply on joint and single-word 

frequencies, we also used a recent approach based on a connectionist model. In his seminal work, 

Elman (1990) proposed a network consisting of symbolic input and output units for each stimulus 

that are connected by a layer of hidden units. To obtain a representation of the language context, the 

state of this hidden layer is copied to a contextual layer when the next stimulus is presented. This 

network is trained to predict the respectively next word. Mikolov, Chen, Corrado, and Dean (2013; 

see also Mikolov, Yih, & Zweig, 2013) used this basic model architecture to define two language 

models, the continuous bag of words (CBOW) model and the skip-gram model. In CBOW, a word 

is predicted from the context of the two preceding and two following words. The skip-gram model 

is the inverse, in which a word is used to predict its context, two words in either direction. This 

                                                
1 Retrieved from https://principlesoflearning.wordpress.com/dissertation/chapter-3-literature-review-2/the-behavioral-

perspective/associationism-aristotle-–-350-b-c-e/#_ftn1 on March 1, 2018. 
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model has been successfully used by Bhatia (2017) to account for association-based judgments in 

different tasks. In Tversky and Kahneman’s (1983) ‘Linda problem’, for instance, participants are 

given the background information that “Linda is 31 years old, (…) majored in philosophy (…) was 

deeply concerned with issues of discrimination and social justice, and also participated in 

antinuclear demonstrations” (Bhatia, 2017, p. 2). Tversky and Kahneman (1983) showed that 

participants were more likely to judge Linda to be a feminist bank teller rather than a bank teller, 

even though the conjunction of two probabilities must be less probable than either individual 

probability (the conjunction fallacy). When the semantic distances between questions and answers 

are used to account for such associative judgments, word2vec can nicely account for this 

conjunction fallacy. Hofmann, Biemann and Remus (2017) also relied on Mikolov, Chen et al.’s 

(2013) model when accounting for human cloze completion probabilities, as well as event-related 

potentials and eye movement parameters previously accounted for by cloze completions. The 

CBOW model not only accounted for N400 effects, but also for single-fixation durations, i.e. for the 

duration of a single fixation that was sufficient for successfully recognizing a word. Finally, 

Mandera, Keulers and Brysbaert (2017) used word2vec to successfully predict primed lexical 

decision and naming times, as well as semantic similarity and relatedness ratings.  

 

Experiential measures 

In addition to the word frequencies of both words, we also addressed the interaction of other 

single-word features of the two stimulus words. We used the three rating variables of the BAWL-R 

(Võ et al., 2009): emotional valence, emotional arousal, and imageability. By measuring the extent 

to which the interaction of these three features could account for variance in association ratings, we 

were able to test Bower's (1981) proposal that positive or negative emotion is itself a memory unit 

that is associated with a word. This associative spreading-activation approach predicts that two 

words will be judged to have a greater association when they are of a consistent (positive or 
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negative) valence (Jacobs et al., 2015; Kuhlmann, Hofmann, Briesemeister, & Jacobs, 2016). 

Because the product of emotional valence is largest when both words have a high valence with the 

same sign, this interaction approach tests for the hypothesis that the consistent valences of both 

words can account for variance in the association rating task. This prediction can also be derived 

from Schröder and Thagard’s (2013) proposal that two concepts are associated when they are 

evaluated with the same positive or negative valence. Because their activity dimension reflects 

arousal ratings, they would also predict that two words are judged to be associated when they both 

have a high level of arousal. Finally, Paivio’s (1969) dual coding theory would suggest that in 

addition to the association between the verbal representations, the association between highly 

imageable words can rely on mental imagery representations. Therefore, two highly imageable 

words may elicit greater association ratings (see discussion in Johns & Jones, 2015). 

 

The present studies 

Because averaging across items has become standard for the evaluation of computational 

models (Spieler & Balota, 1997), we evaluated the predictor variables based on the amount of 

explained item-level variance in mean association ratings. As the amount of reproducible variance 

should be comparable across studies, and because this kind of evaluation depends on the number of 

subjects (Rey, Courrieu, Schmidt-Weigand, & Jacobs, 2009), we decided to use approximately the 

same number of participants as in all previous AS-based behavioral studies (N ~ 30; e.g., Hofmann 

et al., 2011; Hofmann & Jacobs, 2014; Stuellein et al., 2016). 

While the item level is well-suited for calculating regression coefficients (Lorch & Myers, 

1990), it discards any between-subject variability. To avoid false positive statistical results, 

particularly due to effects close to the significance threshold (Quene & Van den Bergh, 2008), we 

additionally used linear mixed effect models (LME) on the single-trial data (e.g., Baayen, Davidson, 

& Bates, 2007; Kliegl, Risse & Laubrock, 2007).  
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We planned three studies to test whether AS and the interactions of the single-word features 

(i.e. word frequency, emotional valence, arousal and imageability) could reproducibly account for 

unique variance in the association rating task. Study 1 tests this directly. In study 2, we additionally 

tested whether PMI could also account for unique variance. Therefore, we selected word pairs in 

which these variables provided a low to moderate correlation, i.e. r’s ~ 0.3 (Cohen, 1988). Because 

many studies obtain the best results using PPMI (e.g. Bullinaria & Levy, 2007), in study 2 we 

further selected stimuli with a positive PMI score only. As studies 1 and 2 contained only words 

with a length of up to nine letters, study 3 was conducted to generalize to words of a length of up to 

18 letters (Hofmann & Jacobs, 2014; Jacobs & Grainger, 1994; Pitt et al., 2002). 

In more exploratory analyses, we considered other computational measures of association. 

As these predictors often provided a high correlation with the other predictors (see Table 1 below 

for the intercorrelations between the variables), we conducted a hierarchical cluster analysis, and 

then examine the LME model predictor variables in a competitive cluster-wise fashion, as we 

describe in more detail below. 

 

General method  

Procedure 

All three studies were implemented online as HTML and PHP script. The experimenter 

started it either in a Safari browser (Mac computers) or in a Firefox browser (Windows computers). 

On the introductory screen, participants entered an identification number, as well as their sex and 

age. Participants were instructed verbally and in written form to rate the intensity of association of 

word pairs on a 7-point scale. To reduce inter-subject variability with respect to the definition of the 

term "Assoziationsstärke" [association strength], we constrained the meaning of this term, by using 

the quasi-synonymous definitions of "wie stark ist der Bedeutungszusammenhang" [how strong is 

the meaning relatedness], and "gedanklich verknüpft" [mentally linked] in the instructions. 
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Furthermore, we gave standardized examples of high association pairs (“Butter” [butter] and “Brot” 

[bread], and “Pudel” [poodle] and “Hund” [dog]); and low association pairs (“Pyramide” [pyramid] 

and “Schnee” [snow], “Yoga” [yoga] und "Imprägnierspray" [waterproofing spray]) to minimize 

decision criteria variability. Two lists presenting the two words in inverted order were generated. 

Participants were randomly assigned to one of the lists. The sequence of the word pairs was 

randomized for each participant separately. Each trial consisted of a stimulus and a rating box. Each 

stimulus consisted of a 30-character string with one word at the beginning and the other word at the 

end. The middle positions were filled with dashes (‘-’). Below each stimulus, we presented a box 

containing the rating scale. The box contained the question “Wie stark sind diese beiden Wörter 

assoziiert?  (1 – nicht assoziiert… 7 – stark assoziiert): ” [How strong is the association between 

both words? (1- not associated… 7- strongly associated):], as well as seven fields with the numbers 

1-7 given below. Participants were instructed to tick one of these fields, and then press the “OK” 

button in the lower right corner of the box. Though the total time available for the ratings was not 

constrained, participants were instructed that there are no wrong answers and that they should 

respond as spontaneously as possible. In all, the studies took 30 minutes or less. 

 

Materials 

All single-word and sentence co-occurrence data were taken from the German corpus of the 

Leipzig Wortschatz project (status: December 2006; Quasthoff et al., 2006). The corpus is largely 

composed of online newspapers (1992–2006), and consists of 800 million tokens in 43 million 

sentences.  

AS was based on whether two words occur more often together in the sentences than is 

predictable from the single occurrence frequency of the words, using the method described above. 

For the number of common associates, we used the 1000 words with the most significant log 

likelihoods (Dunning, 1993), while excluding the 100 most frequent words. PMI was calculated 
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from the probability that the words co-occur in sentences, divided by the product of the single 

occurrence probabilities of the words. The resulting term was log-normalized (for details see 

Bouma, 2009). For PPMI, values lower than zero were set to zero. Joint frequency is a count of 

the number of sentences in which both words co-occur. In addition to the log-transformation, we set 

the value of the predictor to zero when the words did not co-occur at all.  

To train CBOW and skip-gram models, we used gensim 3.0.0 (Rehurek & Sojka, 2010; cf. 

Mikolov, Chen et al., 2013). We used 1000 hidden units, excluded words with a frequency of 10 or 

lower, and trained the model in 10 iterations to predict the words of the 43 million sentences, 

respectively. To adjust for the influence of the most frequent words, we relied on negative sampling 

(k = 10; Mikolov, Sutskever Chen, Corrado, & Dean, et al., 2013). As all other co-occurrence 

measures were based on a log-transformed scale, we explored this possibility for the word2vec 

predictors as well. Because the cosine distances can become negative, we added their minima to 

make all predictors positive. We log10-transformed the resulting values. When we examined the 

item-level variance based on all 900 stimuli, log-transformed CBOW distances accounted for 25% 

of the item-level variance, which is substantially lower than the 35% of the raw CBOW measure. 

Log-transformed skip-gram data accounted for 29%, in contrast to 43% item-level variance 

explained by the raw skip-gram model. Since the nonlinearity provided by the word2vec model 

seems to provide interval scaling properties that make an additional log transform unnecessary, we 

did not log-transform these predictors. 

Word frequency measures were taken from the same corpus. To facilitate the comparison 

of corpora of different sizes, Leipzig word frequency classes relate the frequency of each word to 

the frequency of the most frequent word using the definition that the most common German word 

“der” is 2class more frequent than the word of which the frequency is given (Quasthoff et al., 2006). 

Using this measure, more frequent words are assigned to lower word frequency classes. To make 
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this measure more intuitive (i.e. so that more frequent words are given higher frequency values), we 

multiplied this class by -1.  

The experiential measures of study 1 were taken from the revised Berlin Affective Word 

List (BAWL-R; see Võ et al., 2009, for details). Stimulus selection for studies 2 and 3 was based on 

an extended version of the BAWL including about 9,000 words (Conrad et al., in prep.; cf. Võ et 

al., 2009). The emotional valence ratings are based on a 7-point scale ranging from -3 (very 

negative) through 0 (neutral) to 3 (very positive). The 7-point imageability scale ranges from 1 

(low imageability) to 7 (high imageability). Arousal ratings are based on a 5-point scale ranging 

from 1 (low arousal) to 5 (high arousal).  

 We selected 300 noun pairs as stimuli for each study. For the predictor variables derived 

from the single-word features of frequency, valence, arousal, and imageability, we computed the 

interaction of the respective feature values of both words as the product of those values. As can be 

seen in rows and columns 1-5 of Table 1, AS, word frequency, emotional valence, arousal, and 

imageability provided a maximum correlation of 0.3 with each other predictor variable. For the 

exploratory predictor variables in rows and columns 6-11, there are larger correlations. The 

distributional features of the predictor variables can be examined in Table 2. 

 

--- insert Tables 1 and 2 about here --- 

 

Data analysis  

In each study, after testing how much variance in participant responses could be explained 

by each of the single predictors alone, we used LME modeling on the single-trial data as 

implemented by the lme4 r-package (version 1.1-12). In addition to including random intercepts for 

subjects and items, we tested whether the trial number should be included in the baseline model to 
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account for fatigue or familiarization with the task. All independent variables were centered before 

the analyses, except for those providing an interpretable 0 score (i.e. AS, PMI, and PPMI).  

In the planned analyses for the three studies, we tested whether AS, and the interaction of 

the single-word features (frequency, emotional valence, arousal and imageability) could account for 

unique variance in the association rating task. We selected the stimuli of the three studies so that 

these predictor variables provided a low to moderate correlation, i.e. r values ~ 0.3 (Cohen, 1988). 

Fulfilling this criterion assures that the tolerance is 0.91 or larger, and the variance inflation is 1.09 

or lower, ensuring that multicollinearity was not critical (O’Brian, 2007). We started by entering all 

the predictors, and then removed those that did not enter into the model significantly, using two 

standard errors as significance criterion (i.e. t ³ 2; cf. Baayen et al., 2008, footnote 1; Masson & 

Kliegl, 2013). If a predictor did not surpass that threshold, we excluded it from the subsequent 

model. After each predictor was entered or removed, we tested whether there was a significant 

difference in the log likelihood of the resultant model compared to the previous model, keeping 

more complex models if they show a significant difference and keeping less complex models if they 

did not. 

In addition to examining qq-plots and the residual distribution, we used Kolmogorov-

Smirnov (KS) tests to decide whether the residuals significantly deviate from normality. If they did, 

we trimmed the models by excluding trials in which the residuals deviated more than two 

standardized residuals from the mean. 

 The amount of explained variance for the fixed effects and the total variance explained 

were taken from the marginal and conditional r2 values, as computed by the r.squaredGMM 

function from the MuMin R package (version 1.40.0).  

In exploratory analyses, we additionally tested the predictive power of the number of 

common associates, (P)PMI, joint frequency, and CBOW and skip-gram cosine distances. The 

inclusion of these exploratory predictors led to some large intercorrelations between these variables 
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(see Table 1). To interpret the intercorrelational patterns of the predictors, we conducted a cluster 

analysis (Baayen, 2007; Montefinese, Ambrosini, Fairfield, & Mammarella, 2014), by pooling the 

900 word pairs of the three studies and computing the Spearman correlations between the predictor 

variables (Baayen, 2008). Then we performed an agglomerative hierarchical cluster analysis using 

R package hclust (version 3.2.2). The dendrogram can be examined in Figure 1. 

 

--- insert Figure 1 about here --- 

 

 The largest of the four clusters consisted of the co-occurrence-based measures of AS, 

common associates, (P)PMI, and CBOW and skip-gram cosine distances. The second cluster 

consisted of word frequency and arousal. The third cluster contained the experiential predictors of 

emotional valence and imageability. The fourth cluster contained joint frequency only. In 

performing the exploratory analyses we proceeded by entering variables from each of the clusters, 

from the largest to the smallest. The model selection procedure was identical to that described 

above for the planned analyses. 

Study 1  

Participants 

Thirty-four native German subjects participated in study 1 (24 female; age: M = 27.65 years, 

range 19 to 57, SE = 1.67). The participants reported no language or speech impairment, and either 

participated voluntarily or received course credits. 

 

Results and Discussion 

 Item-level analyses. The top predictors of the first cluster were skip-gram cosine distances, 

accounting for 55% of the item-level variance, followed by CBOW cosine accounting for 48%. 
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Correlation coefficients of the predictors with the mean association ratings can be examined in the 

last column of Table 1. The two word2vec predictors were strongly correlated (r = 0.93). AS 

accounted for 46% of the variance in the mean association ratings. PPMI scored slightly better than 

PMI with r-squared values of 41% vs. 40%, followed by the number of common associates with 

28%.  

While the predictor variables of the second cluster, i.e. word frequency and arousal, showed 

no significant correlation, the predictors of the third cluster showed significant correlations. 

Emotional valence and imageability accounted for 12% and 5% of the item-level variance, 

respectively. Finally, joint frequency accounted for 38% of the item-level variance. 

 Planned LME analyses. With 300 word pairs and 34 participants, the analyses were based 

on 10,200 rows of data. The modeling is summarized in Table 3. The best model (Model M3 in 

Table 3) included significant effects of all fixed factors, i.e. AS, word frequency, emotional valence, 

arousal, and imageability. When testing for the normality of the residuals using a KS-test, we found 

a significant deviation from normality (D = 0.025, p < 0.001). Therefore, we removed all 548 

outlier trials deviating more than two standardized residuals from the mean (e.g. Montefinese, 

Zanino, & Ambrosini, 2015). When we re-fit the best model based on the remaining 9,652 trials, the 

KS-Test revealed no significant deviation from normality (D = 0.010, p = 0.24). AS, word 

frequency, emotional valence, arousal and imageability remained significant predictors (see Table 

4). The fixed effects predictors accounted for 43% of the variance. Together with the random terms, 

the full model accounted for 80% of variance. 

 

--- insert Table 3 and 4 about here --- 

 

Exploratory LME analyses. The model selection process revealed that model 8 was the best 

model (model M8 in Table 3), which included AS, number of common associates, skip-gram cosine 
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distances, emotional valence, and imageability. The KS-Test revealed a significant deviance from 

normality (D = 0.025, p < 0.001). We therefore removed trials deviating more than two 

standardized residuals from the mean, leaving us with 9,566 trials. The KS-Test revealed no 

significant deviation from normality in the final model (D = 0.011, p = 0.23; see Table 5). The fixed 

effects of this final model accounted for 50% of the variance, while the full model including 

random intercepts for subject and items accounted for 80%. 

 

--- insert Table 5 about here --- 

 

Study 2 

Participants 

In study 2, we recorded data from 31 German native speakers (17 female; age: M = 27.65; 

range 20 to 61; SE = 1.84). reporting no language or speech impairment. They either participated 

voluntarily or received course credits. 

 

Results and Discussion 

Item-level regressions. Word2vec skip-gram cosine distances accounted for the greatest 

portion (48%) of item-level variance in the first cluster, followed by AS with 37%. The CBOW 

distances accounted for 35%, while the number of common associates accounted for 28%. Across 

the words pairs of study 2 with a positive PMI score, PPMI accounted for 6% of the item-level 

variance. In the second cluster, frequency accounted for 6% as well, and arousal accounted for a 

significant portion of 1%. Emotional valence in the third cluster did not account for a significant 

portion of variance, while imageability accounted for 6%. Joint frequency, the only predictor of the 

last cluster, accounted for 44% of the item-level variance. 
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Planned LME analyses. The analyses, based on 9,300 rows of data, are summarized in Table 

6.  The best model included effects of frequency, valence, and imageability, but no effect of arousal 

(Model M4 in Table 6). The KS-Test revealed that the residuals were not normally distributed (D = 

0.029, p < 0.001). Thus, we excluded all trials which deviated more than two standardized residuals 

from the mean. After the exclusion of these 518 trials, the KS-Test still indicated a non-normal 

distribution of the residuals (D = 0.018, p = 0.0052). When we examined the data more closely, we 

found that there was an unusually high number of ‘1’ (not associated) responses that resulted in 

skewed response and residual distributions. We believe that this is because the stimulus selection 

constraint of a low correlation of AS and PPMI resulted in the selection of many words that are not 

associated. To test whether this constrained the interpretability of our LME, we excluded 3,005 

trials in which the response ‘1’ (not associated) was given, leaving 5,996 trials for analyses. The 

KS-Test revealed no significant deviance from normality of the residuals in these trials (D = 0.013, 

p = 0.27). The model did not change (see Table 4). The fixed effects in the final model accounted 

for 25% of the variance. The total amount of variance explained was 70%. 

 

--- insert Table 6 about here --- 

 

Exploratory LME analyses. For this analysis, we used only PPMI as predictor, because the stimuli 

were selected such that all PMI values were positive. The model selection procedure is shown in 

Table 6. The best model included AS, skip-gram cosine, and joint frequency (Model M15 in Table 

6). The KS-test revealed a significant deviance from normality (D = 0.030, p < 0.001), which even 

remained when removing trials exceeding the criterion of more than two standardized residuals 

from the mean (D = 0.019, p = 0.0038). To correct for the unusually strong left-skewed response 

distribution, we then removed all trials in which the participants responded '1', which left us with 

5,930 trials for the final analyses. The same predictors remained significant, and the KS-test 
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revealed no significant deviance from normality (D = 0.016, p = 0.08). The fixed effects accounted 

for 26% of the variance, while the full model accounted for 59% of the variance (see Table 5). 

 

Study 3 

Participants 

17 of the 31 participants were female (age: M = 29.00; range: 19 to 57; SE = 1.72). All 

participants were native German speakers, reported no language or speech impairment, and either 

participated voluntarily or received course credits. 

 

Results and Discussion 

Item-level regressions. The item level benchmarks of the third study revealed that skip-gram 

cosine is the strongest predictor of association ratings, explaining 50% of the variance. Among the 

other predictors of the first cluster, number of common associates accounted for 41% of the 

variance, directly followed by AS and CBOW distances, both accounting for 40%. PPMI could 

account for 30% of the variance, while PMI accounted for 10% only. Within the second cluster, 

word frequency did not account for variance, but arousal accounted for 2%. Of the other 

experiential predictors in the third cluster, emotional valence accounted for 7%, but imageability 

failed to reach significance. Finally, joint frequency accounted for 27% of the item-level variance. 

Planned LME analyses. The planned analyses, summarized in Table 7, were conducted on 

9,300 rows of data. The best model (Model M4 in Table 7) included AS, emotional valence and 

imageability. Since the KS-Test indicated non-normality of the residuals (D = 0.021, p < 0.001), we 

excluded trials in which the residual deviated more than two standardized values from the mean, 

leaving 8,834 trials for analysis. The KS-test revealed no significant deviation from normality (D = 
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0.013, p = 0.089). The fixed effects accounted for 26% of the variance, while the full model 

accounted for 70% of the variance (see Table 4). 

 

--- insert Table 7 about here --- 

 

Exploratory LME analyses. The exploratory analyses of study 3 are summarized in Table 7.  

The best model (Model M9 in Table 7) included AS, skip-gram cosine, and arousal. A KS-Test 

indicated non-normality (D = 0.021, p < 0.001), thus we removed trials deviating more than two 

standardized residuals from the mean. After that the KS-Test revealed no significant deviance from 

normality (D = 0.014, p = 0.07). In all, the model accounted for 70% of the variance, while the 

fixed effects accounted for 33% of the variance (see Table 5). 

 

General Discussion 

In the item-level benchmarks, skip-gram cosine accounted for approximately 50% of the 

variance in all three studies. AS performed as well as CBOW cosine, reproducibly accounting for 

approximately 40% of the item-level variance. In study 3, the number of common associates 

performed at a similar level, while its performance dropped to around 30% in the others. PMI and 

PPMI showed the largest variability in item-level performance, ranging from around 40% for both 

predictors in study 1 down to 6% for PMI in study 2. Joint frequency reproducibly accounted for 

around 30% of the variance. The only experiential predictor that was significant in the item-level 

analyses of all studies was arousal accounting for at most 2% of the variance. Moreover, the 

correlation was positive in study 1 and study 3, and negative in study 2, thus supporting the notion 

that it is fitting error variance. 
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When selecting the stimuli with a low to moderate correlation between AS and the single-

word features for the planned multiple-predictor analyses, our LME analysis revealed that not only 

AS, but also emotional valence reproducibly accounted for variance. The occurrence of arousal and 

imageability effects depended on the specific selection of stimuli. Emotional valence, in contrast, 

reproducibly accounted for additional association rating performance, which makes it unlikely that 

the result was merely obtained by (over-)fitting the models to error variance (e.g., Pitt et al., 2002). 

The inclusion of this predictor suggests that two words are more likely to elicit high association 

ratings when both words are rated to be highly emotional with a consistent positive or negative 

valence. However, when included in a competitive cluster-wise analysis, emotional valence failed 

to reach significance in two of three studies. Rather, we found that only AS and skip-gram cosine 

reproducibly account for variance in the association rating task. 

 

Experiential-affective word features and semantic cohesion 

The planned LME analyses consistently revealed emotional valence effects in all three 

studies (e.g. Andrews, Vigliocco, & Vinson, 2009; Jacobs et al., 2015; Montefinese et al., 2015). 

The added value of emotional valence confirms Bower’s (1981) proposal that positive or negative 

emotional valence can be theoretically captured by a memory unit associated with a word. When 

both words have been consistently rated as positive or negative, they also provide greater 

association ratings. These affective consistency effects are consistent with a recent theory of 

affective evaluation (Schröder & Thagard, 2013).  

  We further tested whether high imageability words relied not only on associations between 

verbal representations, but also on imageability (Paivio, 1969). This prediction was confirmed in the 

planned analyses of study 1 and study 2. We speculate that the missing imageability effect in study 

3 may result from its relation to emotional valence, which was our most robust rating-based 

predictor of association rating performance. Though there may also be concreteness attributable to 
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other sensory modalities (e.g., Barsalou, 1999), imageability ratings quantify the concreteness only 

of the visual modality. However, because it correlates strongly with concreteness ratings (e.g., r = 

.85 in Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011), imageability can be treated as 

tentative empirical proxy to concreteness. Vigliocco and colleagues (2014) found that emotionally 

valenced words provide lower concreteness ratings, i.e. tend to be more abstract. Further, Kousta 

and colleagues (2011) showed that word recognition effects of concreteness can be absorbed by 

emotional valence. Our reproducible effects of emotional valence in absence of imageability effects 

supported this conclusion. Kousta et al. (2011) suggest that abstract mental representations develop 

from words referring to the internal world. As this internal world becomes very concrete in affective 

bodily expressions (Barrett, 2006), the semantic distances to basic emotion terms referring to facial 

expressions can nicely account for emotional valence, imageability and word recognition variance 

(e.g., Ekman, Sorenson, & Friesen, 1969; Westbury et al., 2013, 2014). Therefore, emotional 

valence can be considered a semantic superfeature that is abstracted by generalizing over specific 

emotions (cf. Jacobs et al., 2015).  

When skip-gram cosine was included in the exploratory analyses, valence effects 

disappeared in two out of three studies. There are three potential reasons for this finding. First, 

emotional valence effects are relatively weak. During word recognition, for instance, Kuperman and 

colleagues (2014) found that it accounts for about 2% of the variance (cf. e.g. Hofmann et al., 2009; 

Larsen, Mercer, Balota & Strube, 2008). Second, when trying to account for other human 

performance, predictor variables derived from other human performance, such as ratings, provide 

the disadvantage that they contain error variance (e.g., Westbury et al., 2013). Though valence and 

arousal ratings provide good reliability scores (r ~ .9; see Kanske & Kotz, 2010), the error variance 

obtained during a first rating study adds to the error variance obtained during the subsequent study. 

Thus, when considering whether experiential and/or corpus-based approaches are a better 

explanation (Andrews et al., 2009), we suggest that researchers should try to get as far as possible to 
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explain the subjective (e.g. ratings) by the non-subjective, because we can understand better what 

an algorithm does than what a human rater does. The subjective is the explanandum of psychology, 

i.e. the thing to be explained. Using subjective judgments as explanans (i.e. as an independent 

variable) causes circularity (cf. Hempel & Oppenheim, 1948; Westbury, 2016). Co-occurrence-

based approaches represent a deeper level of explanation because they provide the key components 

of memory, i.e. a learning history, and a formal account how this “experience” translates to 

microstructure, as well as retrieval of the “remembered” long-term association. The third reason 

why valence effects may be absorbed by co-occurrence-based approaches is the semantic 

cohesiveness hypothesis of affective word processing (Phelps et al., 1998; Maratos, Allen & Rugg, 

2000; cf. Hofmann & Jacobs, 2014, for an overview). This hypothesis proposes that at least some 

word recognition variance previously ascribed to affective word features can be more 

parsimoniously explained by the fact that strongly valenced words have a larger semantic 

cohesiveness. Thus, if a model contains semantic relations, there may be less need for an additional 

affective evaluation mechanism (Koch, Alves, Krüger & Unkelbach, 2016; Hofmann & Jacobs, 

2014). The present study supported a strong version of the semantic cohesion hypothesis of 

affective word processing. Rather than seeing a confound between emotion and semantics, we favor 

the theoretical explanation that emotional valence is one of the cardinal dimensions constituting 

semantic space (e.g., Osgood, Suci, & Tannenbaum, 1957). 

 

From contiguity to semantic structure 

A very simple approach to word co-occurrence is provided by AS, which is used within a 

localist connectionist model of semantic processes (Hofmann et al., 2011; Hofmann & Jacobs, 

2014). While all dual-route models propose a semantic layer at a pre-quantitative level of theorizing 

(Coltheart et al., 2001; Perry et al., 2007), the Associative Read-Out Model (AROM) is the first 

interactive activation model that provides a fully implemented semantic layer and thus a complete 
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whole-word route (Coltheart et al., 2001; Perry et al., 2007). It was designed as a general approach 

to all tasks activating semantic long-term representations (Collins & Loftus, 1975; Hofmann et al., 

2011; McNamara, 2005). Initially, the AROM was introduced to account for episodic memory: 

When a word has many associated items in a recognition memory task, participants are more likely 

to respond that the word was an old word learned in the study phase. Associative connections not 

only account for a semantically induced false memory effect (Roediger & McDermott, 1995), but 

they also successfully predict a boost of recognition memory performance in studied words 

(Hofmann et al., 2011). Recently, we showed that associative connections within the stimulus set 

predict P200 effects of lexical access, as well as semantic integration effects at the level of the N400 

(Stuellein et al., 2016). 

The first word-pair-based test of AS was a re-analysis of Forgász et al.’s (2012) data 

(Hofmann & Jacobs, 2014). It revealed that the AS between the nouns of a compound can make 

parametric predictions of the hemodynamic response in the left inferior frontal gyrus (Hofmann & 

Jacobs, 2014). The most significant voxels crossed a statistical threshold of p < 0.005 after full 

Bonferroni correction for more than 90,000 statistically independent comparisons. The present 

results complement this account by providing reproducible predictions of a behavioral performance 

measure, suggesting that the predictive power of AS can not only be generalized vertically across 

behavioral and neurocognitive levels of analysis, but also horizontally across different stimulus sets 

(Jacobs & Grainger, 1994; Jacobs & Hofmann, 2013; Hofmann & Jacobs, 2014). 

To bridge the gap between models addressing eye movement control during natural reading 

and models visual word recognition (Engbert et al., 2005; Reichle, Rayner, & Pollatsek, 2003; 

Reilly & Radach, 2006), Radach and Hofmann (2016, Fig. 2) recently demonstrated how the 

aggregation of associative energy of multiple prime words may account for the cloze-completion-

based predictability of a target word from sentence context. There is also empirical evidence that 
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high AS to preceding words shortens first fixation and first-pass gaze durations during sentence 

reading (Hölscher, 2017). 

These results suggest that rather than tediously collecting different types of association 

performance pre-experimentally, future studies can simply use AS to quantify associations between 

words. It is well known that such a simple statistical approach to within-sentence co-occurrence can 

account for free association performance in adults (Rapp & Wettler, 1991). Moreover, recent 

research revealed that AS predicts more reliable priming effects at a 1000 ms lag between prime 

and target, thus mirroring the classic finding of greater, free association-based priming at such a 

long stimulus onset asynchrony (SOA; Lucas, 2000; Roelke et al., 2018). At a short, 200 ms SOA, 

in contrast, more reliable effects of the number of common associates are obtained in adults. In all, 

this response pattern suggests that associative and semantic priming during lexical decision can be 

predicted by AS and the number of common associates, respectively (Roelke et al., 2018). A free 

association-based definition of associative priming, however, is particularly problematic, because 

there is a developmental shift from syntagmatic to paradigmatic free association responses from the 

first to the fifth grade in school (Nelson, 1977). Therefore, primed lexical decisions of fourth 

graders profit from the number of common associates, while the number of common associates is 

associated with increased error rates in the second grade (Franke et al., 2017). A direct association 

between prime and target, in contrast, decreases error rates for both samples, though at the expense 

of response speed in second graders. Franke and colleagues (2017) propose that semantic structure 

develops first from simple, syntagmatic contiguity learning as captured by AS, while higher-order 

structure is later developed by generalizing across many common associates. When comparing the 

number of common associates to a classic definition of semantic priming (Lucas, 2000), synonyms 

can simply be found, for instance, by searching for two words providing many common associates, 

and excluding word pairs that directly co-occur (Rapp, 2000), because synonyms are typically 

embedded in similar sentence contexts (Rubenstein & Goodenough, 1965).  
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While the number of common associates did not reproducibly add explained association 

rating variance in the present studies, the skip-gram model as an alternative paradigmatic measure 

of semantic similarity did (e.g. Frank & Willems, 2017). A potential reason for this may be sought 

in the reduction of the dimensionality (e.g. Griffiths et al., 2007; Landauer & Dumais, 1997). Rather 

than using only those contextual feature words that are apparent, the skip-gram model searches for a 

set of latent representations that predict the contextual words by a target. Therefore, the skip-gram 

model generates “latent semantic dimensions” that rely not only on the words that are apparent, but 

also on similar words.  

One type of criticism of co-occurrence based accounts is that the computational linguist 

selects several parameters, e.g. the number of latent semantic dimensions or connections from and 

to hidden units, or other ‘free parameters’ such as the size of the contextual window, which hampers 

the generality of the results and explains a part of the success of word2vec models (Levy, Goldberg, 

& Dagan 2015; Mandera, Keulers, & Brysbaert, 2015). The selection of an appropriate number of 

dimensions is an optimization problem that must be addressed by dimension-reducing approaches 

(e.g., Griffiths et al., 2007; Landauer & Dumais, 1997; Mikolov, Chen, et al., 2013; Mandera et al., 

2015). AS, however, has no latent semantic dimensions or hidden units to be optimized, thus 

reducing the number of free parameters. For AS, the decision to use the sentence level as the next 

larger contextual window was theoretically motivated, because we see it as the logically next higher 

contextual increment on top of the orthographic word layer of interactive activation models (Jacobs 

& Grainger, 1996; McClelland & Rumelhart, 1981). After visual features, letters and orthographic 

word forms, the sentence level logically seems to be the next larger grain size (cf. Ziegler & 

Goswami, 2005). A paragraph and discourse level for including long-range semantics might be the 

next increments (Biemann et al., 2015).  

When thinking about how semantic information is represented in the cognitive system, the 

symbolic approach of the AROM successfully complements the subsymbolic approach of the skip-



 

 

26 

gram model (e.g., Griffith et al., 2007; Landauer & Dumais, 1997; Lund & Burgess, 1996), at least 

when accounting for association rating variance. While the latter may be used to conceptualize 

semantic memory in theories in which the memory representation is distributed across subsymbolic 

units (e.g., Harm & Seidenberg, 2004; McClelland & Chappel, 1998; Steyvers et al., 2006), direct 

links between word units can be used to define semantic long-term associations in symbolic models 

(Anderson, 1983; Anderson et al., 2004; Hummel & Holyoak, 2004; McClelland & Rumelhart, 

1981). 

 

Conclusions 

We conclude that the association rating task is a useful task to benchmark differential 

computational approaches to the association between two words. Our results show that a 

syntagmatic approach such as AS, together with a paradigmatic approach such as the skip-gram 

model reproducibly accounts for a great deal of association rating variance. While we think that 

emotional valence is still a useful theoretical construct, its association rating variance can be often 

explained by co-occurrence-based approaches, probably because sharing the internal world with 

others is one of the reasons why language evolved. 
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Figure Caption 

Figure 1 shows the result of the hierarchical cluster analysis of the 11 predictors of the present 

study. 

 





Table 1. Correlation coefficients (top triangle) and two-tailed significance (bottom triangle) of 
the moderately correlated planned (columns 1-5), and the exploratory predictors (columns 6-
11) and the mean association ratings (column 12) of study 1/ 2/ 3. 
 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1. Association 

Strength 

 -0.27/ 
-0.21/ 
-0.20 

0.18/  
-0.06/ 
0.18 

0.02/  
-0.26/  
-0.01 

0.16/ 
0.20/ 
0.08 

0.72/ 
0.52/ 
0.77 

0.76/ 
0.31/ 
0.49 

0.79/ 
0.31/ 
0.80 

-0.95/ 
0.80/ 
0.84 

0.61/ 
0.46/ 
0.49 

0.75/ 
0.59/ 
0.67 

0.68/ 
0.61/ 
0.63 

2. Frequency ***/ 
***/  
*** 

  -0.07/ 
-0.06/ 
-0.09 

-0.01/ 
-0.25/ 
-0.06 

-0.07/  
0.07/  
-0.15 

0.28/ 
0.59/ 
0.31 

-0.31/ 
-0.32/  
0.48 

-0.25/ 
-0.32/ 
-0.16 

0.41/ 
0.57/  
0.57 

-0.14/  
0.06/  
-0.08 

-0.01/  
0.13/  
-0.06 

-0.03/  
0.25/  
0.02 

3. Emotional 

Valence 

**/ 
0.32/ 
** 

0.21/ 
0.32/ 
0.14 

 0.15/ 
0.32/ 
0.18 

0.07/  
-0.19/ 
0.07 

0.18/ 
0.00/ 
0.18 

0.19/ 
0.05/ 
0.06 

0.19/ 
0.05/ 
0.22 

-0.15/ 
-0.07/ 
0.11 

0.24/ 
0.05/ 
0.19 

0.25/ 
0.05/ 
0.28 

0.35/ 
0.06/ 
0.26 

4. Arousal 0.71/ 
***/ 
0.83 

0.86/ 
***/ 
0.33 

**/  
***/ 
** 

 -0.12/ 
-0.23/ 
-0.22 

0.10/  
-0.24/ 
0.09 

0.03/ 
0.01/  
-0.08 

0.03/ 
0.01/ 
0.00 

-0.01/ 
-0.30/ 
-0.05 

0.10/  
-0.14/ 
0.14 

0.10/  
-0.13/ 
0.13 

0.12/  
-0.12/ 
0.15 

5. Imageability **/  
***/ 
0.17 

0.2/ 
0.24/ 
** 

0.24/ 
***/ 
0.22 

*/   
***/ 
*** 

 0.06/ 
0.16/ 
0.02 

0.21/ 
0.06/  
-0.02 

0.20/ 
0.06/ 
0.12 

-0.16/ 
0.25/ 
0.02 

0.16/ 
0.34/ 
0.02 

0.15/ 
0.31/ 
0.05 

0.23/ 
0.24/ 
0.02 

6. Common 

Associates 

***/ 
***/  
*** 

***/ 
***/ 
*** 

**/ 
0.96/ 
** 

0.1/ 
***/ 
0.12 

0.31/ 
**/ 
0.73 

 0.54/ 
0.05/ 
0.39 

0.55/ 
0.05/ 
0.52 

-0.75/ 
0.73/ 
0.70 

0.70/ 
0.50/ 
0.68 

0.81/ 
0.61/ 
0.82 

0.53/ 
0.53/ 
0.64 

7. PMI ***/ 
***/  
*** 

***/ 
***/ 
*** 

**/ 
0.39/ 
0.28 

0.57/ 
0.9/ 
0.16 

***/ 
0.31/ 
0.75 

***/ 
0.37/ 
*** 

 0.98/ 
1.00/ 
0.53 

-0.72/ 
0.24/ 
0.58 

0.66/ 
0.31/ 
0.16 

0.73/ 
0.38/ 
0.21 

0.63/ 
0.25/ 
0.32 

8. PPMI ***/ 
***/  
*** 

***/ 
***/   
** 

***/ 
0.39/ 
*** 

0.63/ 
0.9/ 
0.96 

***/ 
0.31/  
* 

***/ 
0.37/ 
*** 

***/ 
***/ 
*** 

 -0.74/ 
0.24/ 
0.52 

0.66/ 
0.31/ 
0.42 

0.74/ 
0.38/ 
0.58 

0.64/ 
0.25/ 
0.55 

9. Joint 
Frequency 

***/ 
***/  
*** 

***/ 
***/ 
*** 

**/ 
0.26/ 
0.06 

0.83/ 
***/ 
0.37 

**/   
***/ 
0.77 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

 -0.57/ 
0.50/ 
0.37 

-0.72/ 
0.66/ 
0.51 

-0.62/ 
0.66/ 
0.52 

10. CBOW 
Cosine 

***/ 
***/  
*** 

*/ 
0.31/ 
0.16 

***/ 
0.42/ 
*** 

0.09/ 
*/ 
* 

**/  
***/ 
0.75 

***/ 
***/ 
*** 

***/ 
***/   
** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

 0.93/ 
0.89/ 
0.91 

0.69/ 
0.59/ 
0.63 

11. Skip-gram 
Cosine 

***/ 
***/  
*** 

0.9/   
*/  
0.31 

***/ 
0.41/ 
*** 

0.07/ 
*/       
* 

**/  
***/ 
0.39 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

 0.74/ 
0.69/ 
0.71 

12. Association 
Rating 

***/ 
***/  
*** 

0.65/ 
***/ 
0.75 

***/ 
0.29/ 
*** 

*/      
*/       
* 

***/ 
***/ 
0.78 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

***/ 
***/ 
*** 

 

* P < 0.05; ** P < 0.01; *** P < 0.001 



Table 2. Distributional features of study 1/ 2/ 3. 
 
 M SD Min Max 
Association 

Strength 

1.09/ 
1.18/ 
1.12 

1.17/  
0.82/  
1.36 

0/      
0/       
0 

4.01/  
3.24/ 
5.00 

Frequency 12.12/ 
14.01/ 
11.47 

 2.10/ 
2.02/  
2.76 

18/  
20/   
20 

7/      
8/       
4 

Emotional 

Valence 

0.00/      
-0.18/ 
0.32 

1.36/ 
1.13/ 
1.14 

-2.90/  
-3.00/  
-2.8 

2.90/ 
2.56/ 
2.9 

Arousal 2.96/ 
2.93/ 
2.75 

0.73/ 
0.67/ 
0.66 

1.28/ 
1.33/ 
1.29 

4.71/ 
4.55/ 
5.61 

Imageability 4.19/ 
4.81/ 
4.53 

1.38/ 
1.23/ 
1.45 

1.44/ 
1.78/ 
1.29 

6.88/ 
6.89/ 
6.88 

Common 

Associates 

86.50/ 
50.22/ 
141.81 

82.93/ 
61.49/ 
138.53 

2/      
0/       
0 

431/ 
391/ 
683 

PMI 0.19/ 
0.27/      
-10.20 

0.15/ 
0.13/ 
24.10 

-0.17/ 
0/        
-60.64 

0.58/ 
0.50/ 
11.26 

PPMI 0.20/ 
0.27/ 
1.93 

0.13/ 
0.13/ 
2.28 

0/      
0/       
0 

0.58/ 
0.50/ 
11.26 

Joint Frequency 51.29/ 
10.85/ 
223.61 

179.04/ 
30.88/ 
1668.25 

1/      
1/       
0  

1641/ 
405/ 
28228 

CBOW Cosine 0.25/ 
0.26/ 
0.39 

0.17/ 
0.15/ 
0.19 

-0.04/  
-0.04/  
-0.13 

0.84/ 
0.76/ 
0.94 

Skip-gram Cosine 0.21/ 
0.21/ 
0.30 

0.14/ 
0.10/ 
0.18 

-0.01/ 
0.01/ 
0.03 

0.78/ 
0.58/ 
0.90 

Word Length 6.11/ 
6.11/ 
6.69 

1.23/ 
1.34/ 
2.28 

4/       
4/       
3 

8/      
8/     
18 

 



Table 3: LM
E m

odel sum
m

ary for study 1. The final accepted m
odels for planned and exploratory analyses are show

n in bold. 
 M

odel N
am

e  
Type 

M
odel D

escription 
df 

c
2 

p 
A

C
C

EPTED
 

M
1 

Planned 
(1 | Subjects) + (1 | Item

s) 
 

 
 

B
aseline 

M
2 

Planned 
M

1 + Trial N
um

ber 
1 

3.31 
0.07 

N
o 

M
3 

Planned 
M

1 + A
S + Frequency + V

alence + A
rousal + Im

ageability 
5 

253.77 
< 0.001 

Y
es 

M
4 

Exploratory 
M

1 + A
S + C

om
m

on A
ssociates + (P)PM

I + C
B

O
W

 + Skip-gram
 

6 
398.57 

< 0.001 
Y

es 

M
5 

Exploratory 
M

1 + A
S + C

om
m

on A
ssociates + Skip-gram

 
3 

5.43 
0.14 

Y
es [Sim

pler] 

M
6 

Exploratory 
M

1 + Frequency + A
rousal 

2 
4.31 

0.12 
N

o 

M
7 

Exploratory 
M

1 + V
alence + Im

ageability 
2 

53.92 
< 0.001 

Y
es 

M
8 

E
xploratory 

M
5 + V

alence + Im
ageability 

2 
23.82 

< 0.001 
Y

es 

M
9 

Exploratory 
M

1 + Joint Frequency 
1 

145.17 
< 0.001 

Y
es 

M
10 

Exploratory 
M

8 + Joint Frequency 
1 

2.51 
0.11 

N
o 

 



Table 4. Linear m
ixed effects m

odel results for significant planned predictor variables of the three studies. 

 
Study 1 

Study 2 
Study 3 

R
andom

 Effects 
σ

2 
SD

 
 

σ
2 

SD
 

 
σ

2 
SD

 
 

Item
 Intercept 

1.576 
1.255 

 
1.199 

1.095 
 

1.644 
1.282 

 

Subject Intercept 
0.247 

0.497 
 

0.353 
0.594 

 
0.534 

0.731 
 

R
esidual 

1.002 
1.001 

 
1.046 

1.023 
 

1.507 
1.225 

 

Fixed effects 
b 

SE 
t-value 

b 
SE

 
t-value 

b 
SE

 
t-value 

(Intercept)          
2.823 

0.134 
21.033 

2.894 
0.159 

18.157 
2.847 

0.164 
17.404 

A
ssociation Strength  

1.128 
0.067 

16.623 
0.974 

0.082 
11.818 

0.767 
0.056 

13.653 

Frequency            
-0.011 

0.002 
-4.757 

0.007 
0.002 

3.233 
 

 
 

Em
otional V

alence              0.173 
0.037 

4.673 
0.169 

0.064 
2.659 

0.139 
0.049 

2.866 

A
rousal            

0.0522 
0.022 

2.362 
 

 
 

0.067 
0.025 

2.700 

Im
ageability 

0.021 
0.008 

2.726 
0.017 

0.007 
2.349 

 
 

 

 



Table 5. Linear m
ixed effects m

odel results for the exploratory analyses. 

 
Study 1 

Study 2 
Study 3 

R
andom

 Effects 
σ

2 
SD

 
 

σ
2 

SD
 

 
σ

2 
SD

 
 

Item
 Intercept 

1.246 
1.116 

 
0.779 

0.883 
 

1.287 
1.135 

 

Subject Intercept 
0.250 

0.500 
 

0.339 
0.582 

 
0.533 

0.730 
 

R
esidual 

1.003 
1.001 

 
1.448 

1.203 
 

1.502 
1.225 

 

Fixed effects 
b 

SE 
t-value 

b 
SE

 
t-value 

b 
SE

 
t-value 

(Intercept)          
3.723 

0.155 
24.042 

3.946 
0.179 

21.994 
3.294 

0.165 
19.995 

A
ssociation Strength  

0.567 
0.090 

6.313 
0.240 

0.110 
2.175 

0.363 
0.067 

5.416 

N
 C

om
m

on A
ssociates   -0.007 

0.001 
-4.748 

 
 

 
 

 
 

Skip-gram
 C

osine 
9.360 

0.899 
10.414 

4.859 
0.744 

6.534 
4.893 

0.514 
9.525 

Em
otional V

alence              0.143 
0.033 

4.342 
 

 
 

 
 

 

A
rousal 

 
 

 
 

 
 

0.044 
0.022 

2.002 

Im
ageability       

0.015 
0.007 

2.098 
 

 
 

 
 

 

Joint Frequency 
 

 
 

0.286 
0.070 

4.076 
 

 
 

 



Table 6: LM
E m

odel sum
m

ary for study 2. The final accepted m
odels for planned and exploratory analyses are show

n in bold. 
 M

odel N
am

e  
T

ype 
M

odel D
escription 

df 
c
2 

p 
A

C
C

E
PT

E
D

 

M
1 

Planned 
(1 | Subjects) + (1 | Item

s) 
 

 
 

B
aseline 

M
2 

Planned 
M

1 + Trial N
um

ber 
1 

2.73 
0.098 

N
o 

M
3 

Planned 
M

1 + A
S + Frequency + V

alence + A
rousal + Im

ageability 
5 

162.09 
< 0.001 

Y
es 

M
4 

Planned 
M

1 + A
S + Frequency + V

alence + Im
ageability 

1 
1.31 

0.25 
Y

es [Sim
pler] 

M
5 

Exploratory 
M

1 + A
S + C

om
m

on A
ssociates + PPM

I + C
B

O
W

 + Skip-gram
 

5 
234.1 

< 0.001 
Y

es 

M
6  

Exploratory 
M

1 + A
S + Skip-gram

 
3 

4.54 
0.29 

Y
es [Sim

pler] 

M
7 

Exploratory 
M

1 + Frequency + A
rousal 

2 
20.88 

< 0.001 
Y

es 

M
8 

Exploratory 
M

1 + Frequency 
1 

1.43 
0.23 

Y
es [Sim

pler] 

M
9 

Exploratory 
M

6 + Frequency 
1 

9.12 
0.0025 

Y
es 

M
10  

Exploratory 
M

1 + V
alence + Im

ageability 
2 

21.44 
< 0.001 

Y
es 

M
11 

Exploratory 
M

1 + Im
ageability 

1 
3.27 

0.07 
Y

es [Sim
pler] 

M
12 

Exploratory 
M

9 + Im
ageability 

1 
0.17 

0.68 
N

o 

M
13 

Exploratory 
M

1 + Joint Frequency 
1 

173.34 
< 0.001 

Y
es 

M
14 

Exploratory 
M

9 + Joint frequency 
1 

5.20 
0.023 

Y
es 

M
15 

E
xploratory 

M
1 + A

S + Skip-gram
 + Joint frequency 

1 
0.18 

0.68 
Y

es [Sim
pler] 

 



Table 7: LM
E m

odel sum
m

ary for study 3. The final accepted m
odels for planned and exploratory analyses are show

n in bold. 
 M

odel N
am

e  
T

ype 
M

odel D
escription 

df 
c
2 

p 
A

ccepted 

M
1 

Planned 
(1 | Subjects) + (1 | Item

s) 
 

 
 

B
aseline 

M
2 

Planned 
M

1 + Trial num
ber 

1 
0.02 

0.96 
N

o 

M
3 

Planned 
M

1 + A
S + Frequency + V

alence + A
rousal + Im

ageability 
5 

175.55 
< 0.001 

Y
es 

M
4 

Planned 
M

1 + A
S + V

alence + Im
ageability 

2 
3.99 

0.14 
Y

es [Sim
pler] 

M
5 

Exploratory 
M

1 + A
S + C

om
m

on A
ssociates + (P)PM

I + C
B

O
W

 + Skip-gram
 

6 
248.52 

< 0.001 
Y

es 

M
6 

Exploratory 
M

1 + A
S + Skip-gram

 
4 

8.77 
0.07 

Y
es [Sim

pler] 

M
7 

Exploratory 
M

1 + Frequency + A
rousal 

2 
5.40 

0.07 
N

o 

M
8  

Exploratory 
M

1 + A
rousal 

1 
4.93 

0.036 
Y

es 

M
9  

E
xploratory 

M
6 + A

rousal 
1 

3.9 
0.048 

Y
es 

M
10  

Exploratory 
M

1 + V
alence + Im

ageability 
2 

22.6 
< 0.001 

Y
es 

M
11 

Exploratory 
M

1 + V
alence 

1 
0.034 

0.85 
Y

es [Sim
pler] 

M
12 

Exploratory 
M

9 + V
alence 

1 
2.68 

0.1 
N

o 
 


